Identification and Expression Analysis of Medicago truncatula Isopentenyl Transferase Genes (IPTs) Involved in Local and Systemic Control of Nodulation

نویسندگان

  • Mahboobeh Azarakhsh
  • Maria A. Lebedeva
  • Lyudmila A. Lutova
چکیده

Cytokinins are essential for legume plants to establish a nitrogen-fixing symbiosis with rhizobia. Recently, the expression level of cytokinin biosynthesis IPTs (ISOPENTENYLTRANSFERASES) genes was shown to be increased in response to rhizobial inoculation in Lotus japonicus, Medicago truncatula and Pisum sativum. In addition to its well-established positive role in nodule primordium initiation in root cortex, cytokinin negatively regulates infection processes in the epidermis. Moreover, it was reported that shoot-derived cytokinin inhibits the subsequent nodule formation through AON (autoregulation of nodulation) pathway. In L. japonicus, LjIPT3 gene was shown to be activated in the shoot phloem via the components of AON system, negatively affecting nodulation. However, in M. truncatula, the detailed analysis of MtIPTs expression, both in roots and shoots, in response to nodulation has not been performed yet, and the link between IPTs and AON has not been studied so far. In this study, we performed an extensive analysis of MtIPTs expression levels in different organs, focusing on the possible role of MtIPTs in nodule development. MtIPTs expression dynamics in inoculated roots suggest that besides its early established role in the nodule primordia development, cytokinin may be also important for later stages of nodulation. According to expression analysis, MtIPT3, MtIPT4, and MtIPT5 are activated in the shoots in response to inoculation. Among these genes, MtIPT3 is the only one the induction of which was not observed in leaves of the sunn-3 mutant defective in CLV1-like kinase, the key component of AON, suggesting that MtIPT3 is activated in the shoots in an AON-dependent manner. Taken together, our findings suggest that MtIPTs are involved in the nodule development at different stages, both locally in inoculated roots and systemically in shoots, where their expression can be activated in an AON-dependent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Wide Identification and Expression Analysis of the 14-3-3 Family Genes in Medicago truncatula

The 14-3-3 gene family, which is conserved in eukaryotes, is involved in protein-protein interactions and mediates signal transduction. However, detailed investigations of the 14-3-3 gene family in Medicago truncatula are largely unknown. In this study, the identification and study of M. truncatula 14-3-3-family genes were performed based on the latest M. truncatula genome. In the M. truncatula...

متن کامل

CLE peptides control Medicago truncatula nodulation locally and systemically.

The CLAVATA3/embryo-surrounding region (CLE) peptides control the fine balance between proliferation and differentiation in plant development. We studied the role of CLE peptides during indeterminate nodule development and identified 25 MtCLE peptide genes in the Medicago truncatula genome, of which two genes, MtCLE12 and MtCLE13, had nodulation-related expression patterns that were linked to p...

متن کامل

Identification and Network-Enabled Characterization of Auxin Response Factor Genes in Medicago truncatula

The Auxin Response Factor (ARF) family of transcription factors is an important regulator of environmental response and symbiotic nodulation in the legume Medicago truncatula. While previous studies have identified members of this family, a recent spurt in gene expression data coupled with genome update and reannotation calls for a reassessment of the prevalence of ARF genes and their interacti...

متن کامل

IN BRIEF Medicago truncatula CRE1 Cytokinin Receptor Regulates Nodulation and Lateral Root Development

The plant hormone cytokinin is implicated in the control of root architecture and development, including legume root nodulation. Gonzalez-Rizzo et al. (pages 2680–2693) identified a Medicago truncatula homolog of Arabidopsis, CYTOKININ RESPONSE1 (CRE1), which encodes a cytokinin receptor histidine kinase, and made use of RNA interference of Mt CRE1 to investigate the role of cytokinin in the no...

متن کامل

Medicago truncatula CRE1 cytokinin receptor regulates nodulation and lateral root development.

The plant hormone cytokinin is implicated in the control of root architecture and development, including legume root nodulation. Gonzalez-Rizzo et al. (pages 2680–2693) identified a Medicago truncatula homolog of Arabidopsis, CYTOKININ RESPONSE1 (CRE1), which encodes a cytokinin receptor histidine kinase, and made use of RNA interference of Mt CRE1 to investigate the role of cytokinin in the no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018